您的位置:首页技术文章
文章详情页

python实现K折交叉验证

【字号: 日期:2022-06-22 08:05:48浏览:3作者:猪猪

本文实例为大家分享了python实现K折交叉验证的具体代码,供大家参考,具体内容如下

用KNN算法训练iris数据,并使用K折交叉验证方法找出最优的K值

import numpy as npfrom sklearn import datasetsfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import KFold # 主要用于K折交叉验证# 导入iris数据集iris = datasets.load_iris()X = iris.datay = iris.targetprint(X.shape,y.shape)# 定义想要搜索的K值,这里定义8个不同的值ks = [1,3,5,7,9,11,13,15]# 进行5折交叉验证,KFold返回的是每一折中训练数据和验证数据的index# 假设数据样本为:[1,3,5,6,11,12,43,12,44,2],总共10个样本# 则返回的kf的格式为(前面的是训练数据,后面的验证集):# [0,1,3,5,6,7,8,9],[2,4]# [0,1,2,4,6,7,8,9],[3,5]# [1,2,3,4,5,6,7,8],[0,9]# [0,1,2,3,4,5,7,9],[6,8]# [0,2,3,4,5,6,8,9],[1,7]kf = KFold(n_splits = 5, random_state=2001, shuffle=True)# 保存当前最好的k值和对应的准确率best_k = ks[0]best_score = 0# 循环每一个k值for k in ks: curr_score = 0 for train_index,valid_index in kf.split(X):# 每一折的训练以及计算准确率clf = KNeighborsClassifier(n_neighbors=k)clf.fit(X[train_index],y[train_index])curr_score = curr_score + clf.score(X[valid_index],y[valid_index]) # 求一下5折的平均准确率 avg_score = curr_score/5 if avg_score > best_score:best_k = kbest_score = avg_score print('current best score is :%.2f' % best_score,'best k:%d' %best_k) print('after cross validation, the final best k is :%d' %best_k)

python实现K折交叉验证

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持好吧啦网。

标签: Python 编程
相关文章: