用Python实现Newton插值法
def diff(xi,yi,n): ''' param xi:插值节点xi param yi:插值节点yi param n: 求几阶差商 return: n阶差商 ''' if len(xi) != len(yi): #xi和yi必须保证长度一致return else:diff_quot = [[] for i in range(n)]for j in range(1,n+1): if j == 1:for i in range(n+1-j): diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1])) else:for i in range(n+1-j): diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j])) return diff_quot
测试一下:
xi = [1.615,1.634,1.702,1.828]yi = [2.41450,2.46259,2.65271,3.03035]n = 3print(diff(xi,yi,n))
返回的差商结果为:
[[2.53105263157897, 2.7958823529411716, 2.997142857142854], [3.0440197857724347, 1.0374252793901158], [-9.420631485362996]]
2. 牛顿插值实现def Newton(x): f = yi[0] v = [] r = 1 for i in range(n):r *= (x - xi[i])v.append(r)f += diff_quot[i][0] * v[i] return f
测试一下:
x = 1.682print(Newton(x))
结果为:
2.5944760289639732
3.完整Python代码def Newton(xi,yi,n,x): ''' param xi:插值节点xi param yi:插值节点yi param n: 求几阶差商 param x: 代求近似值 return: n阶差商 ''' if len(xi) != len(yi): #xi和yi必须保证长度一致return else:diff_quot = [[] for i in range(n)]for j in range(1,n+1): if j == 1:for i in range(n+1-j): diff_quot[j-1].append((yi[i]-yi[i+1]) / (xi[i] - xi[i + 1])) else:for i in range(n+1-j): diff_quot[j-1].append((diff_quot[j-2][i]-diff_quot[j-2][i+1]) / (xi[i] - xi[i + j])) print(diff_quot)f = yi[0] v = [] r = 1 for i in range(n):r *= (x - xi[i])v.append(r)f += diff_quot[i][0] * v[i] return f
到此这篇关于用Python实现牛顿插值法的文章就介绍到这了,更多相关python牛顿插值法内容请搜索好吧啦网以前的文章或继续浏览下面的相关文章希望大家以后多多支持好吧啦网!
相关文章: