python jieba库的基本使用
jieba是优秀的中文分词第三方库
中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需要额外安装 jieba库提供三种分词模式,最简单只需要掌握一个函数 二、jieba库安装pip install jieba三、jieba分词的原理
jieba分词依靠中文词库
利用一个中文词库,确定汉字之间的关联概率 汉字间概率大的组成词组,形成分词结果 四、jieba分词的3种模式 精确模式:把文本精确地切分开,不存在冗余单词(最常用) 全模式:把文本中所有可能的词语都扫描出来,有冗余 搜索引擎模式:在精确模式的基础上,对长词再次切分 五、jieba库常用函数函数 描述 jieba.lcut(s) 精确模式,返回一个列表类型的分词结果 jieba.lcut(s,cut_all=True) 全模式,返回一个列表类型的分词结果,存在冗余 jieba.lcut_for_search(s) 搜索引擎模式,返回一个列表类型的分词结果,存在冗余 jieba.lcut(s) 精确模式,返回一个列表类型的分词结果 jieba.add_word(s) 向分词词典增加新词w
例子:
>>> jieba.lcut('中国是一个伟大的国家')[’中国’, ’是’, ’一个’, ’伟大’, ’的’, ’国家’]>>> jieba.lcut('中国是一个伟大的国家', cut_all=True)[’中国’, ’国是’, ’一个’, ’伟大’, ’的’, ’国家’]>>> jieba.lcut_for_search('中华人民共和国是伟大的')[’中华’, ’华人’, ’人民’, ’共和’, ’共和国’, ’中华人民共和国’, ’是’, ’伟大’, ’的’]六、文本词频示例
问题分析
英文文本: Hamlet 分析词频https://python123.io/resources/pye/hamlet.txt
中文文本: 《三国演义》 分析人物https://python123.io/resources/pye/threekingdoms.txt
代码如下:
def getText(): # 打开 hamlet.txt 这个文件 txt = open('hamlet.txt', 'r').read() # 避免大小写对词频统计的干扰,将所有单词转换为小写 txt = txt.lower() # 将文中出现的所有特殊字符替换为空格 for ch in ’|'#$%^&*()_+-=`~{}[];:<>?/’: txt = txt.replace(ch, ' ') # 返回一个所以后单词都是小写的,单词间以空格间隔的文本 return txthamletTxt = getText()# split() 默认使用空格作为分隔符words = hamletTxt.split()counts = {}for word in words: counts[word] = counts.get(word,0) + 1items = list(counts.items())items.sort(key=lambda x:x[1], reverse=True)for i in range(10): word, count = items[i] print('{0:<10}{1:>5}'.format(word,count))
上面代码中的
items.sort(key=lambda x:x[1], reverse=True)
是根据单词出现的次数进行排序,其中使用了 lambda 函数。更多解释请看:https://www.runoob.com/python/att-list-sort.html
下面使用 jieba 库来统计《三国演义》中任务出场的次数:
import jiebatxt = open('threekingdoms.txt','r',encoding='utf-8').read()words = jieba.lcut(txt)counts = {}for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word, 0) + 1items = list(counts.items())items.sort(key=lambda x:x[1], reverse=True)for i in range(15): word, count = items[i] print('{0:<10}{1:>5}'.format(word,count))
运行结果:
曹操 953孔明 836将军 772却说 656玄德 585关公 510丞相 491二人 469不可 440荆州 425玄德曰 390孔明曰 390不能 384如此 378张飞 358
我们可以看到得出的结果与我们想象的有些差异,比如
“却说”、“二人”等与人名无关 “诸葛亮”、“孔明”都是同一个人 “孔明”和“孔明曰”分词不符合我们的需求所以我们需要对上面代码进行优化,在词频统计的基础上,面向问题改造我们的程序。
下面是《三国演义》人物数量统计代码的升级版,升级版中对于某些确定不是人名的词,即使做了词频统计,也要将它删除掉。使用寄一个集合excludes来接收一些确定不是人名但是又排序比较靠前的单词列进去。
import jiebatxt = open('threekingdoms.txt','r',encoding='utf-8').read()excludes = {'将军','却说','荆州','二人','不可','不能','如此'}words = jieba.lcut(txt)counts = {}for word in words: if len(word) == 1: continue elif word == '诸葛亮' or word == '孔明曰': rword == '孔明' elif word == '关公' or word == '云长': rword == '关羽' elif word == '玄德' or word == '玄德曰': rword == '刘备' elif word == '孟德' or word == '丞相': rword == '曹操' else: rword = word counts[rword] = counts.get(rword, 0) + 1items = list(counts.items())items.sort(key=lambda x:x[1], reverse=True)for i in range(15): word, count = items[i] print('{0:<10}{1:>5}'.format(word,count))
运行结果:
曹操 963孔明 847张飞 366商议 359如何 352主公 340军士 320吕布 303左右 298军马 297赵云 283刘备 282引兵 279次日 278大喜 274
可以看出还是有像“商议”、“如何”等不是人物的词出现在统计结果,我们将这些词加入到 excludes 中,多次运行程序后最后得到《三国演义》任务出场顺序前20:
七、文本词频统计问题举一反三应用问题扩展
《红楼梦》、《西游记》、《水浒传》...等名著都可以统计它的任务出场次数 政府工作报告、科研论文、新闻报道...中出现的大量的词频进行分析,进而找到每篇文章的重点内容 进一步,对文本的词语或词汇绘制成词云,使其展示的效果更加直观以上内容资料均来源于中国大学MOOC网-北京理工大学Python语言程序设计课程课程地址:https://www.icourse163.org/course/BIT-268001
以上就是python jieba库的基本使用的详细内容,更多关于python jieba库的资料请关注好吧啦网其它相关文章!
相关文章:
