Python 爬虫性能相关总结
这里我们通过请求网页例子来一步步理解爬虫性能
当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环
简单的循环串行
这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和代码如下:
import requestsurl_list = [ ’http://www.baidu.com’, ’http://www.pythonsite.com’, ’http://www.cnblogs.com/’]for url in url_list: result = requests.get(url) print(result.text)
通过线程池
通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多
import requestsfrom concurrent.futures import ThreadPoolExecutordef fetch_request(url): result = requests.get(url) print(result.text)url_list = [ ’http://www.baidu.com’, ’http://www.bing.com’, ’http://www.cnblogs.com/’]pool = ThreadPoolExecutor(10)for url in url_list: #去线程池中获取一个线程,线程去执行fetch_request方法 pool.submit(fetch_request,url)pool.shutdown(True)
线程池+回调函数
这里定义了一个回调函数callback
from concurrent.futures import ThreadPoolExecutorimport requestsdef fetch_async(url): response = requests.get(url) return responsedef callback(future): print(future.result().text)url_list = [ ’http://www.baidu.com’, ’http://www.bing.com’, ’http://www.cnblogs.com/’]pool = ThreadPoolExecutor(5)for url in url_list: v = pool.submit(fetch_async,url) #这里调用回调函数 v.add_done_callback(callback)pool.shutdown()
通过进程池
通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好
import requestsfrom concurrent.futures import ProcessPoolExecutordef fetch_request(url): result = requests.get(url) print(result.text)url_list = [ ’http://www.baidu.com’, ’http://www.bing.com’, ’http://www.cnblogs.com/’]pool = ProcessPoolExecutor(10)for url in url_list: #去进程池中获取一个线程,子进程程去执行fetch_request方法 pool.submit(fetch_request,url)pool.shutdown(True)
进程池+回调函数
这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源
from concurrent.futures import ProcessPoolExecutorimport requestsdef fetch_async(url): response = requests.get(url) return responsedef callback(future): print(future.result().text)url_list = [ ’http://www.baidu.com’, ’http://www.bing.com’, ’http://www.cnblogs.com/’]pool = ProcessPoolExecutor(5)for url in url_list: v = pool.submit(fetch_async, url) # 这里调用回调函数 v.add_done_callback(callback)pool.shutdown()
主流的单线程实现并发的几种方式
asyncio gevent Twisted Tornado下面分别是这四种代码的实现例子:
asyncio例子1:
import asyncio@asyncio.coroutine #通过这个装饰器装饰def func1(): print(’before...func1......’) # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep yield from asyncio.sleep(2) print(’end...func1......’)tasks = [func1(), func1()]loop = asyncio.get_event_loop()loop.run_until_complete(asyncio.gather(*tasks))loop.close()
上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。
asyncio例子2:
import asyncio@asyncio.coroutinedef fetch_async(host, url=’/’): print('----',host, url) reader, writer = yield from asyncio.open_connection(host, 80) #构造请求头内容 request_header_content = '''GET %s HTTP/1.0rnHost: %srnrn''' % (url, host,) request_header_content = bytes(request_header_content, encoding=’utf-8’) #发送请求 writer.write(request_header_content) yield from writer.drain() text = yield from reader.read() print(host, url, text) writer.close()tasks = [ fetch_async(’www.cnblogs.com’, ’/zhaof/’), fetch_async(’dig.chouti.com’, ’/pic/show?nid=4073644713430508&lid=10273091’)]loop = asyncio.get_event_loop()results = loop.run_until_complete(asyncio.gather(*tasks))loop.close()
asyncio + aiohttp 代码例子:
import aiohttpimport asyncio@asyncio.coroutinedef fetch_async(url): print(url) response = yield from aiohttp.request(’GET’, url) print(url, response) response.close()tasks = [fetch_async(’http://baidu.com/’), fetch_async(’http://www.chouti.com/’)]event_loop = asyncio.get_event_loop()results = event_loop.run_until_complete(asyncio.gather(*tasks))event_loop.close()
asyncio+requests代码例子
import asyncioimport requests@asyncio.coroutinedef fetch_async(func, *args): loop = asyncio.get_event_loop() future = loop.run_in_executor(None, func, *args) response = yield from future print(response.url, response.content)tasks = [ fetch_async(requests.get, ’http://www.cnblogs.com/wupeiqi/’), fetch_async(requests.get, ’http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091’)]loop = asyncio.get_event_loop()results = loop.run_until_complete(asyncio.gather(*tasks))loop.close()
gevent+requests代码例子
import geventimport requestsfrom gevent import monkeymonkey.patch_all()def fetch_async(method, url, req_kwargs): print(method, url, req_kwargs) response = requests.request(method=method, url=url, **req_kwargs) print(response.url, response.content)# ##### 发送请求 #####gevent.joinall([ gevent.spawn(fetch_async, method=’get’, url=’https://www.python.org/’, req_kwargs={}), gevent.spawn(fetch_async, method=’get’, url=’https://www.yahoo.com/’, req_kwargs={}), gevent.spawn(fetch_async, method=’get’, url=’https://github.com/’, req_kwargs={}),])# ##### 发送请求(协程池控制最大协程数量) ###### from gevent.pool import Pool# pool = Pool(None)# gevent.joinall([# pool.spawn(fetch_async, method=’get’, url=’https://www.python.org/’, req_kwargs={}),# pool.spawn(fetch_async, method=’get’, url=’https://www.yahoo.com/’, req_kwargs={}),# pool.spawn(fetch_async, method=’get’, url=’https://www.github.com/’, req_kwargs={}),# ])
grequests代码例子这个是讲requests+gevent进行了封装
import grequestsrequest_list = [ grequests.get(’http://httpbin.org/delay/1’, timeout=0.001), grequests.get(’http://fakedomain/’), grequests.get(’http://httpbin.org/status/500’)]# ##### 执行并获取响应列表 ###### response_list = grequests.map(request_list)# print(response_list)# ##### 执行并获取响应列表(处理异常) ###### def exception_handler(request, exception):# print(request,exception)# print('Request failed')# response_list = grequests.map(request_list, exception_handler=exception_handler)# print(response_list)
twisted代码例子
#getPage相当于requets模块,defer特殊的返回值,rector是做事件循环from twisted.web.client import getPage, deferfrom twisted.internet import reactordef all_done(arg): reactor.stop()def callback(contents): print(contents)deferred_list = []url_list = [’http://www.bing.com’, ’http://www.baidu.com’, ]for url in url_list: deferred = getPage(bytes(url, encoding=’utf8’)) deferred.addCallback(callback) deferred_list.append(deferred)#这里就是进就行一种检测,判断所有的请求知否执行完毕dlist = defer.DeferredList(deferred_list)dlist.addBoth(all_done)reactor.run()
tornado代码例子
from tornado.httpclient import AsyncHTTPClientfrom tornado.httpclient import HTTPRequestfrom tornado import ioloopdef handle_response(response): ''' 处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop() :param response: :return: ''' if response.error: print('Error:', response.error) else: print(response.body)def func(): url_list = [ ’http://www.baidu.com’, ’http://www.bing.com’, ] for url in url_list: print(url) http_client = AsyncHTTPClient() http_client.fetch(HTTPRequest(url), handle_response)ioloop.IOLoop.current().add_callback(func)ioloop.IOLoop.current().start()
以上就是Python 爬虫性能相关总结的详细内容,更多关于Python 爬虫性能的资料请关注好吧啦网其它相关文章!
相关文章:
1. 将properties文件的配置设置为整个Web应用的全局变量实现方法2. ASP.NET MVC使用异步Action的方法3. 在Asp.net core项目中使用WebSocket4. JavaScript实现组件化和模块化方法详解5. Python制作一个随机抽奖小工具的实现6. 使用python画出逻辑斯蒂映射(logistic map)中的分叉图案例7. 利用FastReport传递图片参数在报表上展示签名信息的实现方法8. SpringMVC+Jquery实现Ajax功能9. python3.8.1+selenium实现登录滑块验证功能10. matplotlib如何设置坐标轴刻度的个数及标签的方法总结