您的位置:首页技术文章
文章详情页

python如何解析复杂sql,实现数据库和表的提取的实例剖析

浏览:57日期:2022-07-25 14:49:54

需求:

公司的数据分析师,提交一个sql, 一般都三四百行。由于数据安全的需要,不能开放所有的数据库和数据表给数据分析师查询,所以需要解析sql中的数据库和表,与权限管理系统中记录的数据库和表权限信息比对,实现非法查询的拦截。

解决办法:

在解决这个问题前,现在github找了一下轮子,发现python下面除了sql parse没什么好的解析数据库和表的轮轮。到是在java里面找到presto-parser解析的比较准。于是自己结合sql parse源码写了个类,供大家参考,测试了一下,检测还是准的。

测试sql

selectb.product_name '产品',count(a.order_id) '订单量',b.selling_price_max '销售价',b.gross_profit_rate_max/100 '毛利率',case when b.business_type =1 then ’自营消化’ when b.business_type =2 then ’服务商消化’ end '消化模式'from(select ’CRM签单’ label,date(d.update_ymd) close_ymd,c.product_name,c.product_id, a.order_id,cast(a.recipient_amount as double) amt,d.cost from mysql4.dataview_fenxiao.fx_order a left join mysql4.dataview_fenxiao.fx_order_task b on a.order_id = b.order_id left join mysql7.dataview_trade.ddc_product_info c on cast(c.product_id as varchar) = a.product_ids and c.snapshot_version = ’SELLING’ inner join (select t1.par_order_id,max(t1.update_ymd) update_ymd,sum(case when t4.product2_type = 1 and t5.shop_id is not null then t5.price else t1.order_hosted_price end) costfrom hive.bdc_dwd.dw_mk_order t1left join hive.bdc_dwd.dw_mk_order_status t2 on t1.order_id = t2.order_id and t2.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2)left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_idleft join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = ’SELLING’left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_idwhere t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2)and t2.valid_state in (100,200) ------有效订单and t1.order_mode = 10 --------产品消耗订单and t2.complete_state = 1 -----订单已经完成group by t1.par_order_id ) d on d.par_order_id = b.task_order_id where c.product_type = 0 and date(from_unixtime(a.last_recipient_time)) > date(’2016-01-01’) and a.payee_type <> 1 -----------已收款 UNION ALL select ’企业管家消耗’ label,date(c.update_ymd) close_ymd,b.product_name,b.product_id, a.task_id,(case when a.yb_price = 0 and b.product2_type = 1 then b.selling_price_min else a.yb_price end) amt, (case when a.yb_price = 0 and b.product2_type = 2 then 0 when b.product2_type = 1 and e.shop_id is not null then e.price else c.order_hosted_price end) cost from mysql8.dataview_tprc.tprc_task a left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = ’SELLING’ inner join hive.bdc_dwd.dw_mk_order c on a.order_id = c.order_id and c.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join hive.bdc_dwd.dw_mk_order_status d on d.order_id = c.order_id and d.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join mysql4.dataview_scrm.sc_tprc_product_info e on e.product_id = b.product_id and e.shop_id = c.seller_id where d.valid_state in (100,200) and d.complete_state = 1 and c.order_mode = 10 union ALL select ’交易管理系统’ label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id, t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt, (case when t1.order_mode <> 11 then t7.user_amount when t1.order_mode = 11 and t4.product2_type = 1 and t5.shop_id is not null then t5.price else t8.cost end) cost from hive.bdc_dwd.dw_mk_order t1 left join hive.bdc_dwd.dw_mk_order_business t2 on t1.order_id = t2.order_id and t2.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = ’SELLING’ left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id left join hive.bdc_dwd.dw_fact_task_ss_daily t6 on t6.task_id = t2.task_id and t6.acct_time=date_format(date_add(’day’,-1,current_date),’%Y-%m-%d’) left join (select a.task_id,sum(a.user_amount) user_amountfrom hive.bdc_dwd.dw_fn_deal_asyn_order awhere a.is_new=1 and a.service=’Trade_Payment’ and a.state=1 and a.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2)group by a.task_id)t7 on t7.task_id = t2.task_id left join (select t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) costfrom hive.bdc_dwd.dw_mk_order t1where t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype = 4 and t1.order_mode = 12group by t1.par_order_id) t8 on t1.order_id = t8.par_order_id where t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype in (4,5) and t1.order_mode <> 12 and t4.product_id is not null and t1.order_hosted_price > 0 and t6.is_deal = 1 and t6.close_ymd >= ’2018-12-31’)aleft join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = ’SELLING’where b.product2_type = 1 -------标品and close_ymd between DATE_ADD(’day’,-7,CURRENT_DATE) and DATE_ADD(’day’,-1,CURRENT_DATE)GROUP BY b.product_name,b.selling_price_max,b.gross_profit_rate_max/100,b.actrul_supply_num,case when b.business_type =1 then ’自营消化’ when b.business_type =2 then ’服务商消化’ endorder by count(a.order_id) desclimit 10

可以看到该sql比较杂,也没有格式化,不太好提取数据库和表。所以第一步需要对sql进行格式化

直接上代码:

# coding=utf-8from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom __future__ import unicode_literalsimport sqlparsefrom sqlparse.sql import Identifier, IdentifierListfrom sqlparse.tokens import Keyword, NameRESULT_OPERATIONS = {’UNION’, ’INTERSECT’, ’EXCEPT’, ’SELECT’}ON_KEYWORD = ’ON’PRECEDES_TABLE_NAME = {’FROM’, ’JOIN’, ’DESC’, ’DESCRIBE’, ’WITH’}class BaseExtractor(object): def __init__(self, sql_statement): self.sql = sqlparse.format(sql_statement, reindent=True, keyword_case=’upper’) self._table_names = set() self._alias_names = set() self._limit = None self._parsed = sqlparse.parse(self.stripped()) for statement in self._parsed: self.__extract_from_token(statement) self._limit = self._extract_limit_from_query(statement) self._table_names = self._table_names - self._alias_names @property def tables(self): return self._table_names @property def limit(self): return self._limit def is_select(self): return self._parsed[0].get_type() == ’SELECT’ def is_explain(self): return self.stripped().upper().startswith(’EXPLAIN’) def is_readonly(self): return self.is_select() or self.is_explain() def stripped(self): return self.sql.strip(’ tn;’) def get_statements(self): statements = [] for statement in self._parsed: if statement:sql = str(statement).strip(’ n;t’)if sql: statements.append(sql) return statements @staticmethod def __precedes_table_name(token_value): for keyword in PRECEDES_TABLE_NAME: if keyword in token_value:return True return False @staticmethod def get_full_name(identifier): if len(identifier.tokens) > 1 and identifier.tokens[1].value == ’.’: return ’{}.{}’.format(identifier.tokens[0].value, identifier.tokens[2].value) return identifier.get_real_name() @staticmethod def __is_result_operation(keyword): for operation in RESULT_OPERATIONS: if operation in keyword.upper():return True return False @staticmethod def __is_identifier(token): return isinstance(token, (IdentifierList, Identifier)) def __process_identifier(self, identifier): if ’(’ not in ’{}’.format(identifier): self._table_names.add(self.get_full_name(identifier)) return # store aliases if hasattr(identifier, ’get_alias’): self._alias_names.add(identifier.get_alias()) if hasattr(identifier, ’tokens’): # some aliases are not parsed properly if identifier.tokens[0].ttype == Name:self._alias_names.add(identifier.tokens[0].value) self.__extract_from_token(identifier) def as_create_table(self, table_name, overwrite=False): exec_sql = ’’ sql = self.stripped() if overwrite: exec_sql = ’DROP TABLE IF EXISTS {};n’.format(table_name) exec_sql += ’CREATE TABLE {} AS n{}’.format(table_name, sql) return exec_sql def __extract_from_token(self, token): if not hasattr(token, ’tokens’): return table_name_preceding_token = False for item in token.tokens: if item.is_group and not self.__is_identifier(item):self.__extract_from_token(item) if item.ttype in Keyword:if self.__precedes_table_name(item.value.upper()): table_name_preceding_token = True continue if not table_name_preceding_token:continue if item.ttype in Keyword or item.value == ’,’:if (self.__is_result_operation(item.value) or item.value.upper() == ON_KEYWORD): table_name_preceding_token = False continue# FROM clause is overbreak if isinstance(item, Identifier):self.__process_identifier(item) if isinstance(item, IdentifierList):for token in item.tokens: if self.__is_identifier(token): self.__process_identifier(token) def _get_limit_from_token(self, token): if token.ttype == sqlparse.tokens.Literal.Number.Integer: return int(token.value) elif token.is_group: return int(token.get_token_at_offset(1).value) def _extract_limit_from_query(self, statement): limit_token = None for pos, item in enumerate(statement.tokens): if item.ttype in Keyword and item.value.lower() == ’limit’:limit_token = statement.tokens[pos + 2]return self._get_limit_from_token(limit_token) def get_query_with_new_limit(self, new_limit): if not self._limit: return self.sql + ’ LIMIT ’ + str(new_limit) limit_pos = None tokens = self._parsed[0].tokens # Add all items to before_str until there is a limit for pos, item in enumerate(tokens): if item.ttype in Keyword and item.value.lower() == ’limit’:limit_pos = posbreak limit = tokens[limit_pos + 2] if limit.ttype == sqlparse.tokens.Literal.Number.Integer: tokens[limit_pos + 2].value = new_limit elif limit.is_group: tokens[limit_pos + 2].value = (’{}, {}’.format(next(limit.get_identifiers()), new_limit) ) str_res = ’’ for i in tokens: str_res += str(i.value) return str_resclass SqlExtractor(BaseExtractor): '''提取sql语句''' @staticmethod def get_full_name(identifier, including_dbs=False): if len(identifier.tokens) > 1 and identifier.tokens[1].value == ’.’: a = identifier.tokens[0].value b = identifier.tokens[2].value db_table = (a, b) full_tree = ’{}.{}’.format(a, b) if len(identifier.tokens) == 3:return full_tree else:i = identifier.tokens[3].valuec = identifier.tokens[4].valueif i == ’ ’: return full_treefull_tree = ’{}.{}.{}’.format(a, b, c)return full_tree return None, Noneif __name__ == ’__main__’: sql = '''select b.product_name '产品', count(a.order_id) '订单量', b.selling_price_max '销售价', b.gross_profit_rate_max/100 '毛利率', case when b.business_type =1 then ’自营消化’ when b.business_type =2 then ’服务商消化’ end '消化模式' from(select ’CRM签单’ label,date(d.update_ymd) close_ymd,c.product_name,c.product_id, a.order_id,cast(a.recipient_amount as double) amt,d.cost from mysql4.dataview_fenxiao.fx_order a left join mysql4.dataview_fenxiao.fx_order_task b on a.order_id = b.order_id left join mysql7.dataview_trade.ddc_product_info c on cast(c.product_id as varchar) = a.product_ids and c.snapshot_version = ’SELLING’ inner join (select t1.par_order_id,max(t1.update_ymd) update_ymd, sum(case when t4.product2_type = 1 and t5.shop_id is not null then t5.price else t1.order_hosted_price end) cost from hive.bdc_dwd.dw_mk_order t1 left join hive.bdc_dwd.dw_mk_order_status t2 on t1.order_id = t2.order_id and t2.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = ’SELLING’ left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id where t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) and t2.valid_state in (100,200) ------有效订单 and t1.order_mode = 10 --------产品消耗订单 and t2.complete_state = 1 -----订单已经完成 group by t1.par_order_id ) d on d.par_order_id = b.task_order_id where c.product_type = 0 and date(from_unixtime(a.last_recipient_time)) > date(’2016-01-01’) and a.payee_type <> 1 -----------已收款 UNION ALL select ’企业管家消耗’ label,date(c.update_ymd) close_ymd,b.product_name,b.product_id, a.task_id,(case when a.yb_price = 0 and b.product2_type = 1 then b.selling_price_min else a.yb_price end) amt, (case when a.yb_price = 0 and b.product2_type = 2 then 0 when b.product2_type = 1 and e.shop_id is not null then e.price else c.order_hosted_price end) cost from mysql8.dataview_tprc.tprc_task a left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = ’SELLING’ inner join hive.bdc_dwd.dw_mk_order c on a.order_id = c.order_id and c.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join hive.bdc_dwd.dw_mk_order_status d on d.order_id = c.order_id and d.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join mysql4.dataview_scrm.sc_tprc_product_info e on e.product_id = b.product_id and e.shop_id = c.seller_id where d.valid_state in (100,200) and d.complete_state = 1 and c.order_mode = 10 union ALL select ’交易管理系统’ label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id, t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt, (case when t1.order_mode <> 11 then t7.user_amount when t1.order_mode = 11 and t4.product2_type = 1 and t5.shop_id is not null then t5.price else t8.cost end) cost from hive.bdc_dwd.dw_mk_order t1 left join hive.bdc_dwd.dw_mk_order_business t2 on t1.order_id = t2.order_id and t2.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) left join mysql7.dataview_trade.mk_order_merchant t3 on t1.order_id = t3.order_id left join mysql7.dataview_trade.ddc_product_info t4 on t4.product_id = t3.MERCHANT_ID and t4.snapshot_version = ’SELLING’ left join mysql4.dataview_scrm.sc_tprc_product_info t5 on t5.product_id = t4.product_id and t5.shop_id = t1.seller_id left join hive.bdc_dwd.dw_fact_task_ss_daily t6 on t6.task_id = t2.task_id and t6.acct_time=date_format(date_add(’day’,-1,current_date),’%Y-%m-%d’) left join (select a.task_id,sum(a.user_amount) user_amount from hive.bdc_dwd.dw_fn_deal_asyn_order a where a.is_new=1 and a.service=’Trade_Payment’ and a.state=1 and a.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) group by a.task_id)t7 on t7.task_id = t2.task_id left join (select t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost from hive.bdc_dwd.dw_mk_order t1 where t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype = 4 and t1.order_mode = 12 group by t1.par_order_id) t8 on t1.order_id = t8.par_order_id where t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) as varchar),9,2) and t1.order_type = 1 and t1.order_stype in (4,5) and t1.order_mode <> 12 and t4.product_id is not null and t1.order_hosted_price > 0 and t6.is_deal = 1 and t6.close_ymd >= ’2018-12-31’ )a left join mysql7.dataview_trade.ddc_product_info b on a.product_id = b.product_id and b.snapshot_version = ’SELLING’ where b.product2_type = 1 -------标品 and close_ymd between DATE_ADD(’day’,-7,CURRENT_DATE) and DATE_ADD(’day’,-1,CURRENT_DATE) GROUP BY b.product_name, b.selling_price_max, b.gross_profit_rate_max/100, b.actrul_supply_num, case when b.business_type =1 then ’自营消化’ when b.business_type =2 then ’服务商消化’ end order by count(a.order_id) desc limit 10''' sql_extractor = SqlExtractor(sql) print(sql_extractor.sql) print(sql_extractor.tables)

输出结果:

{’mysql8.dataview_tprc.tprc_task’, ’hive.bdc_dwd.dw_mk_order’, ’mysql4.dataview_fenxiao.fx_order_task’, ’mysql4.dataview_fenxiao.fx_order’, ’hive.bdc_dwd.dw_mk_order_business’, ’mysql7.dataview_trade.mk_order_merchant’, ’mysql4.dataview_scrm.sc_tprc_product_info’, ’hive.bdc_dwd.dw_fn_deal_asyn_order’, ’hive.bdc_dwd.dw_fact_task_ss_daily’, ’mysql7.dataview_trade.ddc_product_info’, ’hive.bdc_dwd.dw_mk_order_status’}

格式化结果:

SELECT b.product_name '产品', count(a.order_id) '订单量', b.selling_price_max '销售价', b.gross_profit_rate_max/100 '毛利率', CASE WHEN b.business_type =1 THEN ’自营消化’ WHEN b.business_type =2 THEN ’服务商消化’ END '消化模式' from (SELECT ’CRM签单’ label,date(d.update_ymd) close_ymd,c.product_name,c.product_id, a.order_id,cast(a.recipient_amount AS DOUBLE) amt,d.cost FROM mysql4.dataview_fenxiao.fx_order a LEFT JOIN mysql4.dataview_fenxiao.fx_order_task b ON a.order_id = b.order_id LEFT JOIN mysql7.dataview_trade.ddc_product_info c ON cast(c.product_id AS varchar) = a.product_ids AND c.snapshot_version = ’SELLING’ INNER JOIN (SELECT t1.par_order_id,max(t1.update_ymd) update_ymd, sum(CASE WHEN t4.product2_type = 1 AND t5.shop_id IS NOT NULL THEN t5.price ELSE t1.order_hosted_priceEND) cost FROM hive.bdc_dwd.dw_mk_order t1 LEFT JOIN hive.bdc_dwd.dw_mk_order_status t2 ON t1.order_id = t2.order_id AND t2.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) LEFT JOIN mysql7.dataview_trade.mk_order_merchant t3 ON t1.order_id = t3.order_id LEFT JOIN mysql7.dataview_trade.ddc_product_info t4 ON t4.product_id = t3.MERCHANT_ID AND t4.snapshot_version = ’SELLING’ LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info t5 ON t5.product_id = t4.product_id AND t5.shop_id = t1.seller_id WHERE t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) AND t2.valid_state IN (100,200)------有效订单 AND t1.order_mode = 10 --------产品消耗订单 AND t2.complete_state = 1 -----订单已经完成 GROUP BY t1.par_order_id ) d ON d.par_order_id = b.task_order_id WHERE c.product_type = 0 AND date(from_unixtime(a.last_recipient_time)) > date(’2016-01-01’) AND a.payee_type <> 1 -----------已收款 UNION ALL SELECT ’企业管家消耗’ label,date(c.update_ymd) close_ymd,b.product_name,b.product_id, a.task_id,(CASE WHEN a.yb_price = 0 AND b.product2_type = 1 THEN b.selling_price_min ELSE a.yb_price END) amt, (CASE WHEN a.yb_price = 0 AND b.product2_type = 2 THEN 0 WHEN b.product2_type = 1 AND e.shop_id IS NOT NULL THEN e.price ELSE c.order_hosted_price END) cost FROM mysql8.dataview_tprc.tprc_task a LEFT JOIN mysql7.dataview_trade.ddc_product_info b ON a.product_id = b.product_id AND b.snapshot_version = ’SELLING’ INNER JOIN hive.bdc_dwd.dw_mk_order c ON a.order_id = c.order_id AND c.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) LEFT JOIN hive.bdc_dwd.dw_mk_order_status d ON d.order_id = c.order_id AND d.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info e ON e.product_id = b.product_id AND e.shop_id = c.seller_id WHERE d.valid_state IN (100,200) AND d.complete_state = 1 AND c.order_mode = 10 UNION ALL SELECT ’交易管理系统’ label,date(t6.close_ymd) close_ymd,t4.product_name,t4.product_id, t1.order_id,(t1.order_hosted_price-t1.order_refund_price) amt, (CASE WHEN t1.order_mode <> 11 THEN t7.user_amount WHEN t1.order_mode = 11AND t4.product2_type = 1AND t5.shop_id IS NOT NULL THEN t5.price ELSE t8.cost END) cost FROM hive.bdc_dwd.dw_mk_order t1 LEFT JOIN hive.bdc_dwd.dw_mk_order_business t2 ON t1.order_id = t2.order_id AND t2.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) LEFT JOIN mysql7.dataview_trade.mk_order_merchant t3 ON t1.order_id = t3.order_id LEFT JOIN mysql7.dataview_trade.ddc_product_info t4 ON t4.product_id = t3.MERCHANT_ID AND t4.snapshot_version = ’SELLING’ LEFT JOIN mysql4.dataview_scrm.sc_tprc_product_info t5 ON t5.product_id = t4.product_id AND t5.shop_id = t1.seller_id LEFT JOIN hive.bdc_dwd.dw_fact_task_ss_daily t6 ON t6.task_id = t2.task_id AND t6.acct_time=date_format(date_add(’day’,-1,CURRENT_DATE),’%Y-%m-%d’) LEFT JOIN (SELECT a.task_id,sum(a.user_amount) user_amount FROM hive.bdc_dwd.dw_fn_deal_asyn_order a WHERE a.is_new=1 AND a.service=’Trade_Payment’ AND a.state=1 AND a.acct_day=substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) GROUP BY a.task_id)t7 ON t7.task_id = t2.task_id LEFT JOIN (SELECT t1.par_order_id,sum(t1.order_hosted_price - t1.order_refund_price) cost FROM hive.bdc_dwd.dw_mk_order t1 WHERE t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) AND t1.order_type = 1 AND t1.order_stype = 4 AND t1.order_mode = 12 GROUP BY t1.par_order_id) t8 ON t1.order_id = t8.par_order_id WHERE t1.acct_day = substring(cast(DATE_ADD(’day’,-1,CURRENT_DATE) AS varchar),9,2) AND t1.order_type = 1 AND t1.order_stype IN (4,5) AND t1.order_mode <> 12 AND t4.product_id IS NOT NULL AND t1.order_hosted_price > 0 AND t6.is_deal = 1 AND t6.close_ymd >= ’2018-12-31’ )aLEFT JOIN mysql7.dataview_trade.ddc_product_info b ON a.product_id = b.product_idAND b.snapshot_version = ’SELLING’WHERE b.product2_type = 1 -------标品AND close_ymd BETWEEN DATE_ADD(’day’,-7,CURRENT_DATE) AND DATE_ADD(’day’,-1,CURRENT_DATE)GROUP BY b.product_name, b.selling_price_max, b.gross_profit_rate_max/100, b.actrul_supply_num, CASE WHEN b.business_type =1 THEN ’自营消化’ WHEN b.business_type =2 THEN ’服务商消化’ ENDORDER BY count(a.order_id) DESCLIMIT 10

以上这篇python如何解析复杂sql,实现数据库和表的提取的实例剖析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持好吧啦网。

标签: Python 编程