您的位置:首页技术文章
文章详情页

Python基于pyecharts实现关联图绘制

【字号: 日期:2022-07-31 18:58:25浏览:24作者:猪猪

生活中有很多需要用到关联图的地方,至少我认为的是这样的图:https://www.echartsjs.com/examples/zh/editor.html?c=graph-npm

Python基于pyecharts实现关联图绘制

我是在使用Word2Vec计算关联词的余弦距离之后,想要更好的展示出来的时候,遇到的这种情况,就做了下拓展。

画图的步骤主要分为:

1. 将距离数据(或者相关数据)读入;

2. 按照一定的格式和参数将数据保存为json字符串;

3. 根据json串,绘制关联图。

具体而言,主要是:

<1>. 首先有一批数据,如图所示:

Python基于pyecharts实现关联图绘制

<2>. 导入所需要的包

import jsonimport pandas as pdimport randomimport copy

<3>. 产生颜色随机值的函数

# 随机颜色def randomcolor_func(): color_char = [’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’] color_code = '' for i in range(6): color_code += color_char[random.randint(0,14)] # randint包括前后节点0和14 return '#'+color_code

<4>. 生成随机坐标

# 随机坐标#生成随机数,浮点类型def generate_position(n):# n = 10 for i in range(n): x = round(random.uniform(-2000, 2000), 5) #一定范围内的随机数,范围可变 y = round(random.uniform(-2000, 2000), 5) #控制随机数的精度round(数值,精度) return x, y

<5>. 生成json格式的节点数据

def create_json(data, weights): # 自定义节点 address_dict = {'nodes':[], 'edges':[]} node_dict = { 'color': '', 'label': '', 'attributes': {}, 'y': None, 'x': None, 'id': '', 'size': None } edge_dict = { 'sourceID': '', 'attributes': {}, 'targetID': '', 'size': None } # 给节点赋值 for ii in range(len(data)): for jj in range(len(data.iloc[ii])): # node,'attributes'属性可自行设置 node_dict[r'color'] = randomcolor_func() node_dict[r'label'] = data.iloc[ii, jj] x, y = generate_position(1) node_dict[r'y'] = y node_dict[r'x'] = x node_dict[r'id'] = data.iloc[ii, jj] node_dict[r'size'] = int(weights.loc[data.iloc[ii, jj]]) tmp_node = copy.deepcopy(node_dict) address_dict[r'nodes'].append(tmp_node)for ii in range(len(data)): for jj in range(1, len(data.iloc[ii])): # edge edge_dict[r'sourceID'] = data.iloc[ii, 0] edge_dict[r'targetID'] = data.iloc[ii, jj] edge_dict[r'size'] = 2 tmp_edge = copy.deepcopy(edge_dict) address_dict['edges'].append(tmp_edge) return address_dict

<6>. 主函数生成json数据

if __name__ == ’__main__’: # read data data = pd.read_excel(r’test_josn_data.xlsx’, 0) weights = pd.DataFrame({'词频':[100, 40, 30, 20, 90, 50, 35, 14, 85, 38, 29, 10]}, index = [’球类’,’篮球’,’足球’,’羽毛球’,’美食’,’肯德基’,’火锅’,’烤鱼’,’饮料’,’可乐’,’红茶’,’奶茶’]) #建立索引权值列表 address_dict = create_json(data, weights) with open('write_json.json', 'w', encoding=’utf-8’) as f: # json.dump(dict_, f) # 写为一行 json.dump(address_dict, f, indent=2, ensure_ascii=False) # 写为多行

最后形成的json数据如下:

Python基于pyecharts实现关联图绘制

<7>. 绘制关联图,里面的文件读取和保存地址自行修改,write_json.json 就是上面保存的json文件

import pyecharts.options as optsfrom pyecharts.charts import Graphimport jsonwith open(r'D:Python_workspacespyder_spacetest_各种功能write_json.json', encoding=’utf-8’) as f: #设置以utf-8解码模式读取文件,encoding参数必须设置,否则默认以gbk模式读取文件,当文件中包含中文时,会报错 data = json.load(f)#print(data)nodes = [ { 'x': node['x'], 'y': node['y'], 'id': node['id'], 'name': node['label'], 'symbolSize': node['size'], 'itemStyle': {'normal': {'color': node['color']}}, } for node in data['nodes']]edges = [{'source': edge['sourceID'], 'target': edge['targetID']} for edge in data['edges']]( Graph(init_opts=opts.InitOpts(width='1600px', height='800px')) .add( series_name='', nodes=nodes, links=edges, layout='none', is_roam=True, is_focusnode=True, label_opts=opts.LabelOpts(is_show=True), linestyle_opts=opts.LineStyleOpts(width=0.5, curve=0.3, opacity=0.7), ) .set_global_opts(title_opts=opts.TitleOpts(title='热词对应的关联词')) .render('关联词图.html'))

最后,就生成了最开始的那张图。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持好吧啦网。

标签: Python 编程
相关文章: