如何基于java实现Gauss消元法过程解析
补充知识:
正定矩阵
奇异矩阵
严格对角占优
要理解Gauss消去法,首先来看一个例子:
从上例子可以看出,高斯消去法实际上就是我们初中学的阶二元一次方程组,只不过那里的未知数个数$n=2$
$n>2$时,Gauss消去法的思路实际上和解二元一次方程组是一样的,方法如下:
将n方程组中的n−1个方程通过消元,形成一个与原方程组等价的一个新方程组,新方程组中的n−1个方程仅包含n−1个未知数。 故问题就转化为了求解n−1元的方程组,这样我们可以继续消元,以次类推,直到最后一个方程组为一元一次方程组 从最后一个一元一次方程组求解出最后一个未知量,然后逐步回代入之前的方程组,从而得到所有的未知数。 我们可以看到Gauss实际上就分为两步:消去和回代下面通过一般化得到Gauss消元法的求解过程
以上就是Gauss消去法的基本步骤,我们再回过头看看有没有什么问题?
我们在求比例$l_{ik}= frac{a_{ik}^{left (k-1 right )}}{a_{kk}^{left (k-1 right )}}$时,如果分母很小,即:
$l_{ik}rightarrow infty$,那么
总结一下,能否使用Gauss消元法的情况
为了解决这个问题,我们可以使用列主元Gauss消元法。
参考了一些网上的代码,这里给出Gauss的Java实现
package peterxiazhe;import java.util.Scanner;public class Gauss { /** * 列主元高斯消去法 */ static double A[][]; static double b[]; static double x[]; static int n; //n表示未知数的个数 static int n_2; //记录换行的次数 public static void main(String[] args) { System.out.println('--------------输入方程组未知数的个数---------------'); Scanner sc = new Scanner(System.in); n = sc.nextInt();A = new double[n][n]; b = new double[n]; x = new double[n];System.out.println('--------------输入方程组的系数矩阵A:---------------'); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) {A[i][j] = sc.nextDouble(); } }System.out.println('--------------输入方程组的常量向量b:---------------'); for(int i = 0; i < n; i++) {b[i] = sc.nextDouble(); }Elimination(); BackSubstitution(); PrintRoot(); } //消元法 public static void Elimination() { PrintA(); for(int k = 0; k < n; k++) { WrapRow(k); for(int i = k+1; i < n; i++) {double l = A[i][k] / A[k][k];A[i][k] = 0;for(int j = k+1; j < n; j++) { A[i][j] = A[i][j] - l * A[k][j];}b[i] = b[i] - l * b[k]; } //System.out.println('第' + k + '次消元后:'); //PrintA(); } } //回代法 public static void BackSubstitution() { x[n-1] = b[n-1] / A[n-1][n-1]; for(int i = n - 2; i >= 0; i--) { x[i] = (b[i] - solve(i)) / A[i][i]; } } public static double solve(int i) { double result = 0.0; for(int j = i; j < n; j++) result += A[i][j] * x[j]; return result; } //输出方程组的根 public static void PrintRoot() { System.out.println('--------------方程组的根为---------------'); for(int i = 0; i < n; i++) { System.out.println('x' + (i+1) + ' = ' + x[i]); } } //交换Swap函数??? public static void Swap(double[] ar, int x, int y) { Double tmp = ar[x]; ar[x] = ar[y]; ar[y] = tmp; } public static void PrintA() { //输出A的增广矩阵 //System.out.println('--------------增广矩阵---------------'); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) {System.out.print(A[i][j] + ' '); } System.out.println(b[i]); } } //交换矩阵的行 public static void WrapRow(int k) { //k表示第k+1轮消元 double maxElement = Math.abs(A[k][k]);int WrapRowIndex = k; // 记住要交换的行 for(int i = k + 1; i < n; i++) { if (Math.abs(A[i][k]) > maxElement) {WrapRowIndex = i;maxElement = A[i][k]; } } if (WrapRowIndex != k) { //交换求得最大主元 n_2 += 1; System.out.println('k = ' + k + '时,' + '要交换的行为' + k + '和'+ WrapRowIndex); //先交换A for(int j = k; j < n; j++) {double[] arr = {A[k][j], A[WrapRowIndex][j]};Swap(arr, 0, 1);A[k][j] = arr[0]; A[WrapRowIndex][j] = arr[1];//double tmp = A[k][j];//A[k][j] = A[WrapRowIndex][j];//A[WrapRowIndex][j] = tmp; } //再交换b double[] arr = {b[k], b[WrapRowIndex]}; Swap(arr, 0, 1); b[k] = arr[0]; b[WrapRowIndex] = arr[1];// double tmp = b[k];// b[k] = b[WrapRowIndex];// b[WrapRowIndex] = tmp; System.out.println('--------------交换后---------------'); PrintA(); } }}
注意:由于Java不支持对基本数据类型的引用传递,这里使用了一个小技巧
java中交换两个基本数据类型的变量函数swap(int[] source,int i,int j)
java中函数的参数传递机制是:基本数据类型采用值传递,对象采用传引用。因此,如果要写一个交换两个int型变量数值的函数,还真是有点不方便,必须采用一个数组对象来作为辅助,具体实现如下:
//交换两个整数 private static void swap(int[] source, int i, int j) { int temp = source[i]; source[i] = source[j]; source[j] = temp; }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持好吧啦网。
相关文章: