您的位置:首页技术文章
文章详情页

详解批处理框架之Spring Batch

【字号: 日期:2023-07-07 13:48:36浏览:3作者:猪猪
目录一、Spring Batch的概念知识1.1、分层架构1.2、关键概念1.2.1、JobRepository1.2.2、任务启动器JobLauncher1.2.3、任务Job1.2.4、步骤Step1.2.5、输入——处理——输出二、代码实例2.1、基本框架2.2、输入——处理——输出2.2.1、读取ItemReader2.2.2、处理ItemProcessor2.2.3、输出ItremWriter2.3、Step2.4、Job2.5、运行三、监听Listener一、Spring Batch的概念知识1.1、分层架构

Spring Batch的分层架构图如下:

详解批处理框架之Spring Batch

可以看到它分为三层,分别是:

Application应用层:包含了所有任务batch jobs和开发人员自定义的代码,主要是根据项目需要开发的业务流程等。 Batch Core核心层:包含启动和管理任务的运行环境类,如JobLauncher等。 Batch Infrastructure基础层:上面两层是建立在基础层之上的,包含基础的读入reader和写出writer、重试框架等。1.2、关键概念

理解下图所涉及的概念至关重要,不然很难进行后续开发和问题分析。

详解批处理框架之Spring Batch

1.2.1、JobRepository

专门负责与数据库打交道,对整个批处理的新增、更新、执行进行记录。所以Spring Batch是需要依赖数据库来管理的。

1.2.2、任务启动器JobLauncher

负责启动任务Job。

1.2.3、任务Job

Job是封装整个批处理过程的单位,跑一个批处理任务,就是跑一个Job所定义的内容。

详解批处理框架之Spring Batch

上图介绍了Job的一些相关概念:

Job:封装处理实体,定义过程逻辑。 JobInstance:Job的运行实例,不同的实例,参数不同,所以定义好一个Job后可以通过不同参数运行多次。 JobParameters:与JobInstance相关联的参数。 JobExecution:代表Job的一次实际执行,可能成功、可能失败。

所以,开发人员要做的事情,就是定义Job。

1.2.4、步骤Step

Step是对Job某个过程的封装,一个Job可以包含一个或多个Step,一步步的Step按特定逻辑执行,才代表Job执行完成。

详解批处理框架之Spring Batch

通过定义Step来组装Job可以更灵活地实现复杂的业务逻辑。

1.2.5、输入——处理——输出

所以,定义一个Job关键是定义好一个或多个Step,然后把它们组装好即可。而定义Step有多种方法,但有一种常用的模型就是输入——处理——输出,即Item Reader、Item Processor和Item Writer。比如通过Item Reader从文件输入数据,然后通过Item Processor进行业务处理和数据转换,最后通过Item Writer写到数据库中去。

Spring Batch为我们提供了许多开箱即用的Reader和Writer,非常方便。

二、代码实例

理解了基本概念后,就直接通过代码来感受一下吧。整个项目的功能是从多个csv文件中读数据,处理后输出到一个csv文件。

2.1、基本框架

添加依赖:

<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-batch</artifactId></dependency><dependency> <groupId>com.h2database</groupId> <artifactId>h2</artifactId> <scope>runtime</scope></dependency>

需要添加Spring Batch的依赖,同时使用H2作为内存数据库比较方便,实际生产肯定是要使用外部的数据库,如Oracle、PostgreSQL。

入口主类:

@SpringBootApplication@EnableBatchProcessingpublic class PkslowBatchJobMain { public static void main(String[] args) {SpringApplication.run(PkslowBatchJobMain.class, args); }}

也很简单,只是在Springboot的基础上添加注解@EnableBatchProcessing。

领域实体类Employee:

package com.pkslow.batch.entity;public class Employee { String id; String firstName; String lastName;}

对应的csv文件内容如下:

id,firstName,lastName

1,Lokesh,Gupta

2,Amit,Mishra

3,Pankaj,Kumar

4,David,Miller

2.2、输入——处理——输出2.2.1、读取ItemReader

因为有多个输入文件,所以定义如下:

@Value('input/inputData*.csv')private Resource[] inputResources;@Beanpublic MultiResourceItemReader<Employee> multiResourceItemReader(){ MultiResourceItemReader<Employee> resourceItemReader = new MultiResourceItemReader<Employee>(); resourceItemReader.setResources(inputResources); resourceItemReader.setDelegate(reader()); return resourceItemReader;}@Beanpublic FlatFileItemReader<Employee> reader(){ FlatFileItemReader<Employee> reader = new FlatFileItemReader<Employee>(); //跳过csv文件第一行,为表头 reader.setLinesToSkip(1); reader.setLineMapper(new DefaultLineMapper() { { setLineTokenizer(new DelimitedLineTokenizer() {{ //字段名 setNames(new String[] { 'id', 'firstName', 'lastName' });} }); setFieldSetMapper(new BeanWrapperFieldSetMapper<Employee>() {{ //转换化后的目标类 setTargetType(Employee.class);} }); } }); return reader;}

这里使用了FlatFileItemReader,方便我们从文件读取数据。

2.2.2、处理ItemProcessor

为了简单演示,处理很简单,就是把最后一列转为大写:

public ItemProcessor<Employee, Employee> itemProcessor() { return employee -> { employee.setLastName(employee.getLastName().toUpperCase()); return employee; };}2.2.3、输出ItremWriter

比较简单,代码及注释如下:

private Resource outputResource = new FileSystemResource('output/outputData.csv');@Beanpublic FlatFileItemWriter<Employee> writer(){ FlatFileItemWriter<Employee> writer = new FlatFileItemWriter<>(); writer.setResource(outputResource); //是否为追加模式 writer.setAppendAllowed(true); writer.setLineAggregator(new DelimitedLineAggregator<Employee>() { { //设置分割符 setDelimiter(','); setFieldExtractor(new BeanWrapperFieldExtractor<Employee>() {{ //设置字段 setNames(new String[] { 'id', 'firstName', 'lastName' });} }); } }); return writer;}2.3、Step

有了Reader-Processor-Writer后,就可以定义Step了:

@Beanpublic Step csvStep() { return stepBuilderFactory.get('csvStep').<Employee, Employee>chunk(5) .reader(multiResourceItemReader()) .processor(itemProcessor()) .writer(writer()) .build();}

这里有一个chunk的设置,值为5,意思是5条记录后再提交输出,可以根据自己需求定义。

2.4、Job

完成了Step的编码,定义Job就容易了:

@Beanpublic Job pkslowCsvJob() { return jobBuilderFactory .get('pkslowCsvJob') .incrementer(new RunIdIncrementer()) .start(csvStep()) .build();}2.5、运行

完成以上编码后,执行程序,结果如下:

详解批处理框架之Spring Batch

成功读取数据,并将最后字段转为大写,并输出到outputData.csv文件。

三、监听Listener

可以通过Listener接口对特定事件进行监听,以实现更多业务功能。比如如果处理失败,就记录一条失败日志;处理完成,就通知下游拿数据等。

我们分别对Read、Process和Write事件进行监听,对应分别要实现ItemReadListener接口、ItemProcessListener接口和ItemWriteListener接口。因为代码比较简单,就是打印一下日志,这里只贴出ItemWriteListener的实现代码:

public class PkslowWriteListener implements ItemWriteListener<Employee> { private static final Log logger = LogFactory.getLog(PkslowWriteListener.class); @Override public void beforeWrite(List<? extends Employee> list) {logger.info('beforeWrite: ' + list); } @Override public void afterWrite(List<? extends Employee> list) {logger.info('afterWrite: ' + list); } @Override public void onWriteError(Exception e, List<? extends Employee> list) {logger.info('onWriteError: ' + list); }}

把实现的监听器listener整合到Step中去:

@Beanpublic Step csvStep() { return stepBuilderFactory.get('csvStep').<Employee, Employee>chunk(5) .reader(multiResourceItemReader()) .listener(new PkslowReadListener()) .processor(itemProcessor()) .listener(new PkslowProcessListener()) .writer(writer()) .listener(new PkslowWriteListener()) .build();}

执行后看一下日志:

详解批处理框架之Spring Batch

这里就能明显看到之前设置的chunk的作用了。Writer每次是处理5条记录,如果一条输出一次,会对IO造成压力。

以上就是详解Spring Batch入门之优秀的批处理框架的详细内容,更多关于Spring Batch 批处理框架的资料请关注好吧啦网其它相关文章!

标签: Spring
相关文章: