用python搭建一个花卉识别系统
使用步骤如下:* (1)在data_set文件夹下创建新文件夹'flower_data'* (2)点击链接下载花分类数据集download.tensorflow.org/example_im…* (3)解压数据集到flower_data文件夹下* (4)执行'split_data.py'脚本自动将数据集划分成训练集train和验证集val
split_data.py
import osfrom shutil import copy, rmtreeimport random def mk_file(file_path: str): if os.path.exists(file_path):# 如果文件夹存在,则先删除原文件夹在重新创建rmtree(file_path) os.makedirs(file_path) def main(): # 保证随机可复现 random.seed(0) # 将数据集中10%的数据划分到验证集中 split_rate = 0.1 # 指向你解压后的flower_photos文件夹 cwd = os.getcwd() data_root = os.path.join(cwd, 'flower_data') origin_flower_path = os.path.join(data_root, 'flower_photos') assert os.path.exists(origin_flower_path) flower_class = [cla for cla in os.listdir(origin_flower_path) if os.path.isdir(os.path.join(origin_flower_path, cla))] # 建立保存训练集的文件夹 train_root = os.path.join(data_root, 'train') mk_file(train_root) for cla in flower_class:# 建立每个类别对应的文件夹mk_file(os.path.join(train_root, cla)) # 建立保存验证集的文件夹 val_root = os.path.join(data_root, 'val') mk_file(val_root) for cla in flower_class:# 建立每个类别对应的文件夹mk_file(os.path.join(val_root, cla)) for cla in flower_class:cla_path = os.path.join(origin_flower_path, cla)images = os.listdir(cla_path)num = len(images)# 随机采样验证集的索引eval_index = random.sample(images, k=int(num*split_rate))for index, image in enumerate(images): if image in eval_index:# 将分配至验证集中的文件复制到相应目录image_path = os.path.join(cla_path, image)new_path = os.path.join(val_root, cla)copy(image_path, new_path) else:# 将分配至训练集中的文件复制到相应目录image_path = os.path.join(cla_path, image)new_path = os.path.join(train_root, cla)copy(image_path, new_path) print('r[{}] processing [{}/{}]'.format(cla, index+1, num), end='') # processing barprint() print('processing done!') if __name__ == ’__main__’: main()2.神经网络模型
model.py
import torch.nn as nnimport torch class AlexNet(nn.Module): def __init__(self, num_classes=1000, init_weights=False):super(AlexNet, self).__init__()# 用nn.Sequential()将网络打包成一个模块,精简代码self.features = nn.Sequential( # 卷积层提取图像特征 nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input[3, 224, 224] output[48, 55, 55] nn.ReLU(inplace=True), # 直接修改覆盖原值,节省运算内存 nn.MaxPool2d(kernel_size=3, stride=2), # output[48, 27, 27] nn.Conv2d(48, 128, kernel_size=5, padding=2), # output[128, 27, 27] nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 13, 13] nn.Conv2d(128, 192, kernel_size=3, padding=1), # output[192, 13, 13] nn.ReLU(inplace=True), nn.Conv2d(192, 192, kernel_size=3, padding=1), # output[192, 13, 13] nn.ReLU(inplace=True), nn.Conv2d(192, 128, kernel_size=3, padding=1), # output[128, 13, 13] nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), # output[128, 6, 6])self.classifier = nn.Sequential( # 全连接层对图像分类 nn.Dropout(p=0.5), # Dropout 随机失活神经元,默认比例为0.5 nn.Linear(128 * 6 * 6, 2048), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(2048, 2048), nn.ReLU(inplace=True), nn.Linear(2048, num_classes),)if init_weights: self._initialize_weights() # 前向传播过程 def forward(self, x):x = self.features(x)x = torch.flatten(x, start_dim=1)# 展平后再传入全连接层x = self.classifier(x)return x# 网络权重初始化,实际上 pytorch 在构建网络时会自动初始化权重 def _initialize_weights(self):for m in self.modules(): if isinstance(m, nn.Conv2d): # 若是卷积层nn.init.kaiming_normal_(m.weight, mode=’fan_out’, # 用(何)kaiming_normal_法初始化权重nonlinearity=’relu’)if m.bias is not None: nn.init.constant_(m.bias, 0) # 初始化偏重为0 elif isinstance(m, nn.Linear): # 若是全连接层nn.init.normal_(m.weight, 0, 0.01) # 正态分布初始化nn.init.constant_(m.bias, 0) # 初始化偏重为03.训练神经网络
train.py
# 导入包import torchimport torch.nn as nnfrom torchvision import transforms, datasets, utilsimport matplotlib.pyplot as pltimport numpy as npimport torch.optim as optimfrom model import AlexNetimport osimport jsonimport time # 使用GPU训练device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')with open(os.path.join('train.log'), 'a') as log: log.write(str(device)+'n') #数据预处理data_transform = { 'train': transforms.Compose([transforms.RandomResizedCrop(224), # 随机裁剪,再缩放成 224×224 transforms.RandomHorizontalFlip(p=0.5), # 水平方向随机翻转,概率为 0.5, 即一半的概率翻转, 一半的概率不翻转 transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]), 'val': transforms.Compose([transforms.Resize((224, 224)), # cannot 224, must (224, 224) transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])} #导入、加载 训练集# 导入训练集#train_set = torchvision.datasets.CIFAR10(root=’./data’, # 数据集存放目录# train=True, # 表示是数据集中的训练集#download=True, # 第一次运行时为True,下载数据集,下载完成后改为False#transform=transform) # 预处理过程# 加载训练集 #train_loader = torch.utils.data.DataLoader(train_set, # 导入的训练集# batch_size=50, # 每批训练的样本数# shuffle=False, # 是否打乱训练集# num_workers=0) # num_workers在windows下设置为0 # 获取图像数据集的路径data_root = os.path.abspath(os.path.join(os.getcwd(), '../..')) # get data root path 返回上上层目录image_path = data_root + '/jqsj/data_set/flower_data/' # flower data_set path # 导入训练集并进行预处理train_dataset = datasets.ImageFolder(root=image_path + '/train', transform=data_transform['train'])train_num = len(train_dataset) # 按batch_size分批次加载训练集train_loader = torch.utils.data.DataLoader(train_dataset,# 导入的训练集 batch_size=32, # 每批训练的样本数 shuffle=True,# 是否打乱训练集 num_workers=0)# 使用线程数,在windows下设置为0 #导入、加载 验证集# 导入验证集并进行预处理validate_dataset = datasets.ImageFolder(root=image_path + '/val',transform=data_transform['val'])val_num = len(validate_dataset) # 加载验证集validate_loader = torch.utils.data.DataLoader(validate_dataset,# 导入的验证集 batch_size=32, shuffle=True, num_workers=0) # 存储 索引:标签 的字典# 字典,类别:索引 {’daisy’:0, ’dandelion’:1, ’roses’:2, ’sunflower’:3, ’tulips’:4}flower_list = train_dataset.class_to_idx# 将 flower_list 中的 key 和 val 调换位置cla_dict = dict((val, key) for key, val in flower_list.items()) # 将 cla_dict 写入 json 文件中json_str = json.dumps(cla_dict, indent=4)with open(’class_indices.json’, ’w’) as json_file: json_file.write(json_str) #训练过程net = AlexNet(num_classes=5, init_weights=True) # 实例化网络(输出类型为5,初始化权重)net.to(device) # 分配网络到指定的设备(GPU/CPU)训练loss_function = nn.CrossEntropyLoss() # 交叉熵损失optimizer = optim.Adam(net.parameters(), lr=0.0002) # 优化器(训练参数,学习率) save_path = ’./AlexNet.pth’best_acc = 0.0 for epoch in range(150): ########################################## train ############################################### net.train() # 训练过程中开启 Dropout running_loss = 0.0# 每个 epoch 都会对 running_loss 清零 time_start = time.perf_counter()# 对训练一个 epoch 计时for step, data in enumerate(train_loader, start=0): # 遍历训练集,step从0开始计算images, labels = data # 获取训练集的图像和标签optimizer.zero_grad()# 清除历史梯度outputs = net(images.to(device)) # 正向传播loss = loss_function(outputs, labels.to(device)) # 计算损失loss.backward() # 反向传播optimizer.step() # 优化器更新参数running_loss += loss.item()# 打印训练进度(使训练过程可视化)rate = (step + 1) / len(train_loader) # 当前进度 = 当前step / 训练一轮epoch所需总stepa = '*' * int(rate * 50)b = '.' * int((1 - rate) * 50)with open(os.path.join('train.log'), 'a') as log: log.write(str('rtrain loss: {:^3.0f}%[{}->{}]{:.3f}'.format(int(rate * 100), a, b, loss))+'n')print('rtrain loss: {:^3.0f}%[{}->{}]{:.3f}'.format(int(rate * 100), a, b, loss), end='') print() with open(os.path.join('train.log'), 'a') as log: log.write(str(’%f s’ % (time.perf_counter()-time_start))+'n') print(’%f s’ % (time.perf_counter()-time_start)) ########################################### validate ########################################### net.eval() # 验证过程中关闭 Dropout acc = 0.0 with torch.no_grad():for val_data in validate_loader: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] # 以output中值最大位置对应的索引(标签)作为预测输出 acc += (predict_y == val_labels.to(device)).sum().item() val_accurate = acc / val_num# 保存准确率最高的那次网络参数if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path)with open(os.path.join('train.log'), 'a') as log: log.write(str(’[epoch %d] train_loss: %.3f test_accuracy: %.3f n’ % (epoch + 1, running_loss / step, val_accurate))+'n')print(’[epoch %d] train_loss: %.3f test_accuracy: %.3f n’ % (epoch + 1, running_loss / step, val_accurate))with open(os.path.join('train.log'), 'a') as log: log.write(str(’Finished Training’)+'n')print(’Finished Training’)
训练结果后,准确率是94%
训练日志如下:
4.对模型进行预测predict.py
import torch
接着对其中一个花卉图片进行识别,其结果如下:
可以看到只有一个识别结果(daisy雏菊)和准确率1.0是100%(范围是0~1,所以1对应100%)
为了方便使用这个神经网络,接着我们将其开发成一个可视化的界面操作
二、花卉识别系统搭建(flask)1.构建页面:2.调用神经网络模型main.py
# coding:utf-8 from flask import Flask, render_template, request, redirect, url_for, make_response, jsonifyfrom werkzeug.utils import secure_filenameimport osimport time ####################模型所需库包import torchfrom model import AlexNetfrom PIL import Imagefrom torchvision import transformsimport matplotlib.pyplot as pltimport json # read class_indicttry: json_file = open(’./class_indices.json’, ’r’) class_indict = json.load(json_file)except Exception as e: print(e) exit(-1) # create modelmodel = AlexNet(num_classes=5)# load model weightsmodel_weight_path = './AlexNet.pth'#, map_location=’cpu’model.load_state_dict(torch.load(model_weight_path, map_location=’cpu’)) # 关闭 Dropoutmodel.eval() ###################from datetime import timedelta# 设置允许的文件格式ALLOWED_EXTENSIONS = set([’png’, ’jpg’, ’JPG’, ’PNG’, ’bmp’]) def allowed_file(filename): return ’.’ in filename and filename.rsplit(’.’, 1)[1] in ALLOWED_EXTENSIONS app = Flask(__name__)# 设置静态文件缓存过期时间app.send_file_max_age_default = timedelta(seconds=1) #图片装换操作def tran(img_path): # 预处理 data_transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # load image img = Image.open('pgy2.jpg') #plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) return img @app.route(’/upload’, methods=[’POST’, ’GET’]) # 添加路由def upload(): path='' if request.method == ’POST’:f = request.files[’file’]if not (f and allowed_file(f.filename)): return jsonify({'error': 1001, 'msg': '请检查上传的图片类型,仅限于png、PNG、jpg、JPG、bmp'}) basepath = os.path.dirname(__file__) # 当前文件所在路径path = secure_filename(f.filename)upload_path = os.path.join(basepath, ’static/images’, secure_filename(f.filename)) # 注意:没有的文件夹一定要先创建,不然会提示没有该路径# upload_path = os.path.join(basepath, ’static/images’,’test.jpg’) #注意:没有的文件夹一定要先创建,不然会提示没有该路径print(path) img = tran(’static/images’+path)###########################预测图片with torch.no_grad(): # predict class output = torch.squeeze(model(img)) # 将输出压缩,即压缩掉 batch 这个维度 predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() res = class_indict[str(predict_cla)] pred = predict[predict_cla].item() #print(class_indict[str(predict_cla)], predict[predict_cla].item())res_chinese = ''if res=='daisy': res_chinese='雏菊'if res=='dandelion': res_chinese='蒲公英'if res=='roses': res_chinese='玫瑰'if res=='sunflower': res_chinese='向日葵'if res=='tulips': res_chinese='郁金香' #print(’result:’, class_indict[str(predict_class)], ’accuracy:’, prediction[predict_class])##########################f.save(upload_path)pred = pred*100return render_template(’upload_ok.html’, path=path, res_chinese=res_chinese,pred = pred, val1=time.time()) return render_template(’upload.html’) if __name__ == ’__main__’: # app.debug = True app.run(host=’127.0.0.1’, port=80,debug = True)3.系统识别结果
<!DOCTYPE html><html lang='en'><head> <meta charset='UTF-8'> <title>李运辰-花卉识别系统v1.0</title> <script src='https://www.xxx.com.cn/static/js/locales/zh.js'></script> </head><body> <h1 align='center'>李运辰-花卉识别系统v1.0</h1><div align='center'> <form action='' enctype=’multipart/form-data’ method=’POST’><input type='file' name='file' data-show-preview='false' /><br><input type='submit' value='上传' /> </form><p style='size:15px;color:blue;'>识别结果:{{res_chinese}}</p></br><p style='size:15px;color:red;'>准确率:{{pred}}%</p> <img src='https://www.xxx.com.cn/bcjs/{{ ’./static/images/’+path }}' alt=''/></div></body></html>4.启动系统:
python main.py
接着在浏览器在浏览器里面访问
http://127.0.0.1/upload
出现如下界面:
最后来一个识别过程的动图
三、总结ok,这个花卉系统就已经搭建完成了,是不是超级简单,我也是趁着修了这个机器视觉这么课,才弄这么一个系统,回顾一下之前的知识,哈哈哈。
以上就是用python搭建一个花卉识别系统的详细内容,更多关于python 花卉识别系统的资料请关注好吧啦网其它相关文章!
相关文章: