python实现过滤敏感词
关于敏感词过滤可以看成是一种文本反垃圾算法,例如 题目:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用 星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」 代码:
#coding=utf-8def filterwords(x): with open(x,’r’) as f:text=f.read() print text.split(’n’) userinput=raw_input(’myinput:’) for i in text.split(’n’):if i in userinput: replace_str=’*’*len(i.decode(’utf-8’)) word=userinput.replace(i,replace_str) return wordprint filterwords(’filtered_words.txt’)
再例如反黄系列:
开发敏感词语过滤程序,提示用户输入评论内容,如果用户输入的内容中包含特殊的字符:敏感词列表 li = ['苍老师','东京热',”武藤兰”,”波多野结衣”]则将用户输入的内容中的敏感词汇替换成***,并添加到一个列表中;如果用户输入的内容没有敏感词汇,则直接添加到上述的列表中。content = input(’请输入你的内容:’)li = ['苍老师','东京热','武藤兰','波多野结衣']i = 0while i < 4: for li[i] in content:li1 = content.replace(’苍老师’,’***’)li2 = li1.replace(’东京热’,’***’)li3 = li2.replace(’武藤兰’,’***’)li4 = li3.replace(’波多野结衣’,’***’) else:pass i += 1
实战案例:一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路? 有十亿个标题,存在一个文件中,一行一个标题。有5万个敏感词,存在另一个文件。写一个程序过滤掉所有标题中的所有敏感词,保存到另一个文件中。
1、DFA过滤敏感词算法
在实现文字过滤的算法中,DFA是比较好的实现算法。DFA即Deterministic Finite Automaton,也就是确定有穷自动机。 算法核心是建立了以敏感词为基础的许多敏感词树。 python 实现DFA算法:
# -*- coding:utf-8 -*-import timetime1=time.time()# DFA算法class DFAFilter(): def __init__(self):self.keyword_chains = {}self.delimit = ’x00’ def add(self, keyword):keyword = keyword.lower()chars = keyword.strip()if not chars: returnlevel = self.keyword_chainsfor i in range(len(chars)): if chars[i] in level:level = level[chars[i]] else:if not isinstance(level, dict): breakfor j in range(i, len(chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]]last_level[last_char] = {self.delimit: 0}breakif i == len(chars) - 1: level[self.delimit] = 0 def parse(self, path):with open(path,encoding=’utf-8’) as f: for keyword in f:self.add(str(keyword).strip()) def filter(self, message, repl='*'):message = message.lower()ret = []start = 0while start < len(message): level = self.keyword_chains step_ins = 0 for char in message[start:]:if char in level: step_ins += 1 if self.delimit not in level[char]:level = level[char] else:ret.append(repl * step_ins)start += step_ins - 1breakelse: ret.append(message[start]) break else:ret.append(message[start]) start += 1return ’’.join(ret)if __name__ == '__main__': gfw = DFAFilter() path='F:/文本反垃圾算法/sensitive_words.txt' gfw.parse(path) text='新疆骚乱苹果新品发布会?八' result = gfw.filter(text) print(text) print(result) time2 = time.time() print(’总共耗时:’ + str(time2 - time1) + ’s’)
运行效果:
新疆骚乱苹果新品发布会?八****苹果新品发布会**总共耗时:0.0010344982147216797s
2、AC自动机过滤敏感词算法
AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。 简单地讲,AC自动机就是字典树+kmp算法+失配指针
# -*- coding:utf-8 -*-import timetime1=time.time()# AC自动机算法class node(object): def __init__(self):self.next = {}self.fail = Noneself.isWord = Falseself.word = ''class ac_automation(object): def __init__(self):self.root = node() # 添加敏感词函数 def addword(self, word):temp_root = self.rootfor char in word: if char not in temp_root.next:temp_root.next[char] = node() temp_root = temp_root.next[char]temp_root.isWord = Truetemp_root.word = word # 失败指针函数 def make_fail(self):temp_que = []temp_que.append(self.root)while len(temp_que) != 0: temp = temp_que.pop(0) p = None for key,value in temp.next.item():if temp == self.root: temp.next[key].fail = self.rootelse: p = temp.fail while p is not None:if key in p.next: temp.next[key].fail = p.fail breakp = p.fail if p is None:temp.next[key].fail = self.roottemp_que.append(temp.next[key]) # 查找敏感词函数 def search(self, content):p = self.rootresult = []currentposition = 0while currentposition < len(content): word = content[currentposition] while word in p.next == False and p != self.root:p = p.fail if word in p.next:p = p.next[word] else:p = self.root if p.isWord:result.append(p.word)p = self.root currentposition += 1return result # 加载敏感词库函数 def parse(self, path):with open(path,encoding=’utf-8’) as f: for keyword in f:self.addword(str(keyword).strip()) # 敏感词替换函数 def words_replace(self, text):''':param ah: AC自动机:param text: 文本:return: 过滤敏感词之后的文本'''result = list(set(self.search(text)))for x in result: m = text.replace(x, ’*’ * len(x)) text = mreturn textif __name__ == ’__main__’: ah = ac_automation() path=’F:/文本反垃圾算法/sensitive_words.txt’ ah.parse(path) text1='新疆骚乱苹果新品发布会?八' text2=ah.words_replace(text1) print(text1) print(text2) time2 = time.time() print(’总共耗时:’ + str(time2 - time1) + ’s’)
运行结果:
新疆骚乱苹果新品发布会?八****苹果新品发布会**总共耗时:0.0010304450988769531s
以上就是python实现过滤敏感词的详细内容,更多关于python 过滤敏感词的资料请关注好吧啦网其它相关文章!
相关文章: