Python深度学习之使用Pytorch搭建ShuffleNetv2
def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x1.2 block
class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int):super(InvertedResidual, self).__init__()if stride not in [1, 2]: raise ValueError('illegal stride value.')self.stride = strideassert output_c % 2 == 0branch_features = output_c // 2# 当stride为1时,input_channel应该是branch_features的两倍# python中 ’<<’ 是位运算,可理解为计算×2的快速方法assert (self.stride != 1) or (input_c == branch_features << 1)if self.stride == 2: self.branch1 = nn.Sequential(self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1),nn.BatchNorm2d(input_c),nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True) )else: self.branch1 = nn.Sequential()self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True)) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d:return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor:if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1)else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = channel_shuffle(out, 2)return out1.3 shufflenet v2
class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual):super(ShuffleNetV2, self).__init__()if len(stages_repeats) != 3: raise ValueError('expected stages_repeats as list of 3 positive ints')if len(stages_out_channels) != 5: raise ValueError('expected stages_out_channels as list of 5 positive ints')self._stage_out_channels = stages_out_channels# input RGB imageinput_channels = 3output_channels = self._stage_out_channels[0]self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True))input_channels = output_channelsself.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# Static annotations for mypyself.stage2: nn.Sequentialself.stage3: nn.Sequentialself.stage4: nn.Sequentialstage_names = ['stage{}'.format(i) for i in [2, 3, 4]]for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1):seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channelsoutput_channels = self._stage_out_channels[-1]self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True))self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor:# See note [TorchScript super()]x = self.conv1(x)x = self.maxpool(x)x = self.stage2(x)x = self.stage3(x)x = self.stage4(x)x = self.conv5(x)x = x.mean([2, 3]) # global poolx = self.fc(x)return x def forward(self, x: Tensor) -> Tensor:return self._forward_impl(x)二、train.py
到此这篇关于Python深度学习之使用Pytorch搭建ShuffleNetv2的文章就介绍到这了,更多相关Python用Pytorch搭建ShuffleNetv2内容请搜索好吧啦网以前的文章或继续浏览下面的相关文章希望大家以后多多支持好吧啦网!
相关文章: